
STAT 310 Lecture 3
Mihai Anitescu

Outline

�• Homework Questions? Structure of an
optimization code (EXPAND)

�• Survey
�• 2.3 Direct Linear Algebra �– Factorization
�• 2.4 Sparsity
�• 3.1 Failure of vanilla Newton
�• 3.2 Line Search Methods
�• 3.3 Dealing with Indefinite Matrices
�• 3.4 Quasi-Newton Methods

Some thoughts about coding

1. Think ahead of time what functionality your
code will have, and define the interface
properly

2. If portions of code are similar, try to define a
function and �“refactorize�” (e.g the 3 different
iterations).

3. Document your code.
4. Do not write long function files; they are

impossible to debug (unless very experienced).

Example Encapsulation

[xout,iteratesGradNorms]=newtonLikeMethod(@fenton_wrap,[3 4]',1,1e-12,200)

2.3 SOLVING SYSTEMS OF
LINEAR EQUATIONS

2.3.1 DIRECT METHODS: THE
ESSENTIALS

�• Lower Triangular Matrix

�• Upper Triangular Matrix

�• LU decomposition / factorization
 [A] { x } = [L] [U] { x } = { b }
�• Forward substitution
 [L] { d } = { b }
�• Back substitution
 [U] { x } = { d }
�• Q:Why might I do this instead of

Gaussian elimination?

Complexity of LU Decomposition
to solve Ax=b:

�– decompose A into LU -- cost
2n3/3 flops

�– solve Ly=b for y by forw. substitution -- cost n2
flops

�– solve Ux=y for x by back substitution -- cost n2
flops

slower alternative:
�– compute A-1 -- cost 2n3 flops
�– multiply x=A-1b -- cost 2n2

flops
this costs about 3 times as much as LU 26 Sept. 2000 15-859B - Introduction to Scientific

Computing
9

�• If [A] is symmetric and positive definite, it is
convenient to use Cholesky decomposition.

[A] = [L][L]T= [U]T[U]

�• No pivoting or scaling needed if [A] is
symmetric and positive definite (all
eigenvalues are positive)

�• If [A] is not positive definite, the procedure
may encounter the square root of a negative
number

�• Complexity is ½ that of LU (due to symmetry
exploitation)

�• [A] = [U]T[U]
�• Recurrence relations

�• Still need pivoting in LU decomposition
(why?)

�• Messes up order of [L]

�• What to do?

�• Need to pivot both [L] and a permutation
matrix [P]

�• Initialize [P] as identity matrix and pivot
when [A] is pivoted. Also pivot [L]

�• Permutation matrix [P]
 - permutation of identity matrix [I]
�• Permutation matrix performs �“bookkeeping�”

associated with the row exchanges
�• Permuted matrix [P] [A]
�• LU factorization of the permuted matrix
 [P] [A] = [L] [U]
�• Solution
 [L] [U] {x} = [P] {b}

LU-factorization for real symmetric Indefinite matrix A
(constrained optimization has saddle points)

factorization

factorization

where and

Question: 1) If A is not singular, can I be guaranteed to find a nonsingular principal block E
after pivoting? Of what size?

2) Why not LU-decomposition?

History of LDL�’ decomposition: 1x1, 2x2 pivoting

�• diagonal pivoting method with complete pivoting:
Bunch-Parlett, �“Direct methods fro solving symmetric indefinite
systems of linear equations,�” SIAM J. Numer. Anal., v. 8, 1971,
pp. 639-655

�• diagonal pivoting method with partial pivoting:
Bunch-Kaufman, �“Some Stable Methods for Calculating Inertia and
Solving Symmetric Linear Systems,�” Mathematics of
Computation, volume 31, number 137, January 1977, page
163-179

�• DEMOS

2.3.1 DIRECT METHODS:
EXTRA DETAILS

Gaussian Elimination (GE)
�• Add multiples of each row to later rows to make A upper triangular
�• Solve resulting triangular system Ux = c by substitution

Summer School Lecture 4 17

�… for each column i
�… zero it out below the diagonal by adding multiples of row i to later rows
for i = 1 to n-1
 �… for each row j below row i
 for j = i+1 to n
 �… add a multiple of row i to row j
 tmp = A(j,i);
 for k = i to n
 A(j,k) = A(j,k) - (tmp/A(i,i)) * A(i,k)

0
.
.
.
0

0
. . .
0

0
.
0 0

0
0

0
.
.
.
0

0
. . .
0

0
.
0

0
.
.
.
0

0
. . .
0

0
.
.
.
0

After i=1 After i=2 After i=3 After i=n-1

�…

Refine GE (1/5)
�• Initial Version

Remove computation of constant tmp/A(i,i)
from inner loop.

�… for each column i
�… zero it out below the diagonal by adding multiples of row i to later rows
for i = 1 to n-1
 �… for each row j below row i
 for j = i+1 to n
 �… add a multiple of row i to row j
 tmp = A(j,i);
 for k = i to n
 A(j,k) = A(j,k) - (tmp/A(i,i)) * A(i,k)

for i = 1 to n-1
 for j = i+1 to n
 m = A(j,i)/A(i,i)
 for k = i to n
 A(j,k) = A(j,k) - m * A(i,k)

m

i

j

Refine GE (2/5)
�• Last version

�• Don�’t compute what we already know:
zeros below diagonal in column i

Summer School Lecture 4 19

for i = 1 to n-1
 for j = i+1 to n
 m = A(j,i)/A(i,i)
 for k = i+1 to n
 A(j,k) = A(j,k) - m * A(i,k)

for i = 1 to n-1
 for j = i+1 to n
 m = A(j,i)/A(i,i)
 for k = i to n
 A(j,k) = A(j,k) - m * A(i,k)

Do not compute zeros

m

i

j

Refine GE Algorithm (3/5)
�• Last version

�• Store multipliers m below diagonal in zeroed
entries for later use

Summer School Lecture 4 20

for i = 1 to n-1
 for j = i+1 to n
 m = A(j,i)/A(i,i)
 for k = i+1 to n
 A(j,k) = A(j,k) - m * A(i,k)

for i = 1 to n-1
 for j = i+1 to n
 A(j,i) = A(j,i)/A(i,i)
 for k = i+1 to n
 A(j,k) = A(j,k) - A(j,i) * A(i,k)

Store m here

m

i

j

Refine GE Algorithm (4/5)
�• Last version

Summer School Lecture 4 21

for i = 1 to n-1
 for j = i+1 to n
 A(j,i) = A(j,i)/A(i,i)
 for k = i+1 to n
 A(j,k) = A(j,k) - A(j,i) * A(i,k)

�• Split Loop

for i = 1 to n-1
 for j = i+1 to n
 A(j,i) = A(j,i)/A(i,i)
 for j = i+1 to n
 for k = i+1 to n
 A(j,k) = A(j,k) - A(j,i) * A(i,k)

Store all m�’s here before
updating rest of matrix

i

j

Refine GE Algorithm (5/5)
�• Last version

Summer School Lecture 4 22

for i = 1 to n-1
 A(i+1:n,i) = A(i+1:n,i) * (1 / A(i,i))
 �… BLAS 1 (scale a vector)
 A(i+1:n,i+1:n) = A(i+1:n , i+1:n)
 - A(i+1:n , i) * A(i , i+1:n)
 �… BLAS 2 (rank-1 update)

for i = 1 to n-1
 for j = i+1 to n
 A(j,i) = A(j,i)/A(i,i)
 for j = i+1 to n
 for k = i+1 to n
 A(j,k) = A(j,k) - A(j,i) * A(i,k)

What GE really computes

�• Call the strictly lower triangular matrix of
multipliers M, and let L = I+M

�• Call the upper triangle of the final matrix U
�• Lemma (LU Factorization): If the above

algorithm terminates (does not divide by zero)
then A = L*U

Summer School Lecture 4 23

for i = 1 to n-1
 A(i+1:n,i) = A(i+1:n,i) / A(i,i) �… BLAS 1 (scale a vector)
 A(i+1:n,i+1:n) = A(i+1:n , i+1:n) - A(i+1:n , i) * A(i , i+1:n) �… BLAS 2 (rank-1 update)

What GE really computes

�• Solving A*x=b using GE
�– Factorize A = L*U using GE (cost =

2/3 n3 flops)
�– Solve L*y = b for y, using substitution (cost = n2

flops)
�– Solve U*x = y for x, using substitution (cost = n2

flops)

�• Thus A*x = (L*U)*x = L*(U*x) = L*y = b as
desired Summer School Lecture 4 24

for i = 1 to n-1
 A(i+1:n,i) = A(i+1:n,i) / A(i,i) �… BLAS 1 (scale a vector)
 A(i+1:n,i+1:n) = A(i+1:n , i+1:n) - A(i+1:n , i) * A(i , i+1:n) �… BLAS 2 (rank-1 update)

�• Once [L] is formed, we can use forward
substitution instead of forward elimination for
different {b}�’s

Very efficient for
large matrices !

Identical to
Gauss

elimination

Example:

�• Forward-substitution

�• Back-substitution (identical to Gauss
elimination)

2.4 COMPLEXITY OF LINEAR
ALGEBRA; SPARSITY

Complexity of LU Decomposition
to solve Ax=b:

�– decompose A into LU -- cost
2n3/3 flops

�– solve Ly=b for y by forw. substitution -- cost n2
flops

�– solve Ux=y for x by back substitution -- cost n2
flops

slower alternative:
�– compute A-1 -- cost 2n3 flops
�– multiply x=A-1b -- cost 2n2

flops
this costs about 3 times as much as LU 26 Sept. 2000 15-859B - Introduction to Scientific

Computing
32

Complexity of linear algebra

lesson:
�– if you see A-1 in a formula, read it as �“solve a

system�”, not �“invert a matrix�”

Cholesky factorization -- cost n3/3 flops

LDL�’ factorization -- cost n3/3 flops

Q: What is the cost of Cramer�’s rule (roughly)? 26 Sept. 2000 15-859B - Introduction to Scientific
Computing

33

Sparse Linear Algebra

�• Suppose you are applying matrix-vector multiply
and the matrix has lots of zero elements
�– Computation cost? Space requirements?

�• General sparse matrix representation concepts
�– Primarily only represent the nonzero data values

(nnz)
�– Auxiliary data structures describe placement of

nonzeros in �“dense matrix�”

�• And *MAYBE* LU or Cholesky can be done in
O(nnz), so not as bad as (O(n^3)); since very
oftentimes nnz=O(n)

Sparse Linear Algebra

�• Because of its phenomenal computational and
storage savings potential, sparse linear algebra is
a huge research topic.

�• VERY difficult to develop.
�• Matlab implements sparse linear algebra based

on i,j,s format.
�• DEMO
�• Conclusion: Maybe I can SCALE well �… Solve

O(10^12) problems in O(10^12).
35

SUMMARY SECTION 2

�• The heaviest components of numerical software
are Numerical differentiation (AD/DIVDIFF)
and linear algebra.

�• Factorization is always preferable to direct
(Gaussian) elimination.

�• Keeping track of sparsity in linear algebra can
enormously improve performance.

Section 3: Line Search Methods
Mihai Anitescu STAT 310
Reference: Chapter 3 in Nocedal and
Wright.

3.1 FAILURE OF NEWTON
METHODS

Problem definition

 min f (x)

 f : Rn R - continuously differentiable
- gradient is available
-Hessian is unavailable

Necessary optimality conditions: f (x*) = 0

Sufficient optimality conditions:

2 f (x*) 0

DEMO

�• Algorithm: Newton.
�• Note: not only does the algorithm not converge,

the function values go to infinity.
�• So we should have known ahead of time we

should have done something else earlier.

Ways of enforcing that thinks do not
blow up or wander

�• 1. Line-search methods.
�– Make a �“guess�” of a good direction.
�– Make good progress along that direction. At least

know you will decrease f.

�• 2. Trust region model.
�– Create a quadratic model of the function.
�– Define a region where we �“believe�”�—�”trust�” the

model and find a �“good�” point in that �“region�”.
�– If at that point the model is far from f, less trust�—

smaller region, if not, more �–larger region.

3.2 LINE SEARCH METHODS

3.2.1 LINE SEARCH METHODS:
ESSENTIALS

Line Search Methods Idea:

�• At the current point find a �“Newton-like�”
direction

�• Along that direction do 1-dimensional
minimization (simpler than over whole space)

�• Because the line search always decreases f, we
will have an accumulation point (cannot diverge
if bounded below) �– unlike Newton proper

xk
dk

dk

xk+1 argmin f (xk + dk)

g () = f (x k + p k) for f (x k) ' p k < 0

Descent Principle
�• Descent Principle: Carry Out a one-Dimensional

Search Along a Line where I will decrease the
function.

�• If this happens, there exists an alpha (why?)
such that.

�• So I will keep making progress.
�• Typical choice (why)?
�• Newton may need to be modified (why?)

f xk + pk() < f xk()

 Bk pk = f (xk); Bk 0

Line Search-Armijo

 f (xk) f (xk +
m

k dk) m
k f (xk)T dk

 (0,1) (0,1 / 2)

g(0)+ g�’()

g(0)+ c1 g�’()

�•I cannot accept just about ANY decrease, for I may NEVER
converge (why , example of spurious convergence).
�• IDEA: Accept only decreases PROPORTIONAL TO THE
SQUARE OF GRADIENT. Then I have to converge (since process
stops only when gradient is 0).
�• Example: Armijo Rule. It uses the concept of BACKTRACKING.

Some Theory

Newton is accepted by LS

Global Convergence:

Fast Convergence:

Extensions

�• Line Search Refinements:
�– Use interpolation
�– Wolfe and Goldshtein rule

�• Other optimization approaches
�– Steepest descent,
�– CG �….

3.2.2 LINE SEARCH METHODS:
EXTRAS.

3.2.2.1 LINE SEARCH
METHODS: USING
INTERPOLATION IN LINE
SEARCH

 Quadratic Interpolation
Approximate g() with h(0)

 h(0)=g(0), h�’(0) =g�’(0), g(0)

 g(0)

 1

 g(0) g(0) 0g' () 2
 2

Quadratic Interpolation
Potential step 1 = g'() 02

2(g(0) g(0) 0g'())

 g(0)

 1

b = 2() 03 1 g(0) g(0) g'(0) 0

2

 2
0 1 1 0

 Cubic Interpolation
h() = a 3 +b 2 + g'(0)+ g(0)

a 1 0 12 g(1) g(0) g'(0) 1
 3

b+ b2 3ag'(0)
 3a 2 =

Cubic Interpolation

3.2.2.2 LINE SEARCH
METHODS: OTHER LINE
SEARCH PRINCIPLES

Unconstrained optimization methods

 xk+1 = xk + k dk

 k : dk :Step length Search direction

1) Line search

2) Trust-Region algorithms

Quadratic approximation

Influences

Step length computation:

1) Armijo rule:

2) Goldstein rule:

 1 k gk
T dk f (xk + k dk) f (xk) 2 k gk

T dk

 0 < 2 <
1
2 < 1 <1

 f (xk) f (xk +
m

k dk) m
k f (xk)T dk

 (0,1) (0,1 / 2)

 k = (f (xk)T dk) / dk

2

3) Wolfe conditions:

 f (xk + k dk) f (xk) k gk
T dk

 f (xk + k dk)T dk gk
T dk

 0 < <1

Implementations:

Shanno (1978)

Moré - Thuente (1992-1994)

3.2.2.3 LINE SEARCH
METHODS: TAXONOMY OF
METHODS

Methods for Unconstrained Optimization

1) Steepest descent (Cauchy, 1847)

 dk = f (xk)

 dk =
2 f (xk) 1 f (xk)

2) Newton

3) Quasi-Newton (Broyden, 1965; and many others)

 dk = Hk f (xk)

4) Conjugate Gradient Methods (1952)

 dk+1 = gk+1 + ksk

 sk = xk+1 xk

 dk
2 f (xk) 1 gk

rk = 2 f (xk)dk + gk

 k
 is known as the conjugate gradient parameter

5) Truncated Newton method (Dembo, et al, 1982)

6) Trust Region methods

7) Conic model method (Davidon, 1980)

c(d) = f (xk) +

gk
T d

1+ bT d
+ 1

2
dT Ak d

(1+ bT d)2

q(d) = f (xk) + gk

T d + 1
2

dT Bk d

8) Tensorial methods (Schnabel & Frank, 1984)

mT (xc + d) = f (xc) + f (xc) d + 1

2
2 f (xc) d 2

+ 1

6
Tc d 3 + 1

24
Vc d 4

10) Direct searching methods

9) Methods based on systems of Differential Equations
 Gradient flow Method (Courant, 1942)

dx
dt

= 2 f (x) 1 f (x)

 x(0) = x0

Hooke-Jevees (form searching) (1961)
Powell (conjugate directions) (1964)
Rosenbrock (coordinate system rotation)(1960)
Nelder-Mead (rolling the simplex) (1965)
Powell �–UOBYQA (quadratic approximation) (1994-2000)

N. Andrei, Critica Retiunii Algoritmilor de Optimizare fara Restrictii
Editura Academiei Romane, 2008.

